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This pedagogical review is written as a personal retrospective which seeks to place the celebrated Fermi, Pasta, and Ulam paradox into historical
perspective. After stating the Fermi-Pasta—Ulam results, we treat the questions it raises as a pedagogical “skeleton” upon which to drape (and
motivate) the evolving story of nonlinear dynamics/chaos. This review is thus but another retelling of that story by one intimately involved in its
unfolding. This is done without apology for two reasons. First, if my colleagues have taught me anything, it is that an audience of experts will
seldom pay greater attention than when, with some modicum of grace and polish, they are told things they know perfectly well already. Second, if
generations of students have taught me anything, it is that few things fascinate them more than a scientific mystery — and the Fermi-Pasta-Ulam
paradox is a cracker-jack mystery. And so readers, especially graduate students curious about nonlinear dynamics/chaos, are now invited to sit
back, loosen their belts (and minds), and prepare for fact that sometimes reads like fantasy.
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1. Introduction

In the early 1950s MANIAC-I had just been completed and sat poised for an attack on significant
problems. On one of his several visits to the Los Alamos Scientific Laboratory during this period,
Enrico Fermi joined mathematician Stan Ulam and computer scientist John Pasta in a quest for suitable
problems. They each recognized that MANIAC-I could answer questions holding great interest for
mathematics and physics, but which one deserved immediate attention? After reflecting on the matter,
Fermi suggested that it would be highly instructive to integrate the equations of motion numerically for
a judiciously chosen, one-dimensional, harmonic chain of mass points weakly perturbed by nonlinear
forces. Specifically, he pointed out that the shape of such a chain could not be predicted accurately by
anyone after the elapse of a few hundred or so harmonic periods. Eventually, Fermi—Pasta—Ulam
(FPU) intended to use this model to answer various sophisticated questions related to irreversible
statistical mechanics, but the initial studies were intended merely to test the simplest and most widely
believed assertions of equilibrium statistical mechanics such as equipartition of energy, ergodicity, and
the like.

After much back and forth, FPU decided to numerically integrate the weakly nonlinear, fixed-end,
one-dimensional chain of (N — 1) moving mass points having the Hamiltonian
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where Q, =0, =0 and Q, and P, are the coordinate and momentum for the kth particle, where a is a
small nonlinear coupling parameter, and where the particle mass M and harmonic spring constant K
have been eliminated by a standard canonical transformation and a change of time scale. Concurrently,
FPU also considered chains of particles whose Hamiltonians had quartic or broken linear couplings as
well as the cubic nonlinearity explicitly written above. But first, like all good senior scientists sporting a
brand new idea, FPU began looking for someone to do the actual work. Here they were extremely
fortunate to find Mary Tsingou, who programmed the dynamics, ensured its accuracy, and provided
graphs of the results. Numerical integration was carried out in terms of the particle coordinates which
appear in eq. (1). But because the weak nonlinear terms in the FPU oscillator systems primarily serve
only to cause energy sharing between the unperturbed harmonic normal modes, it becomes natural to
present the final results in terms of normal mode coordinates A, specified by

N-
V(2/N) 2 Q, sin(kim/N) .

In terms of these coordinates, Hamiltonian (1) breaks into a sum of independent harmonic oscillators
weakly coupled by terms cubic in the normal mode position variables as revealed by the following
Hamiltonian:

1 .
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where w, =2sin(kw/2N) is the frequency of the kth normal mode, where explicit expressions for the
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constants C,,, are not needed here, where the dot over A, denotes time derivative, and where
E,[=1(A. + w3A2)] is defined to be the energy in the kth normal mode. Finally, because the FPU
nonlinear terms are almost always small relative to the harmonic terms, we note that H=L E, to a
good approximation.

And now at last the stage is set. As FPU await the initial results from Mary Tsingou, they do so
without the slightest a priori hint they have tacitly met a significant criterion enunciated some years
later by the noted Soviet mathematician Dima Arnol’d: “The only computer experiments worth doing
are those that yield a surprise!” Mary Tsingou now enters (stage left) bearing the surprise (see fig. 1).
At time =0 in fig. 1, an N = 32, fixed-end chain governed by Hamiltonian (1) with « = 1/4 was started
at rest in the shape of a half sine wave given by Q, =sin(k/32) and then released; in other words,
only the fundamental harmonic mode was initially excited and given amplitude A, =4 and energy
E, =0.077.... During the time interval 0=r=<16 in fig. 1, where ¢ is measured in periods of the
fundamental mode, modes 2, 3, 4, etc., sequentially begin to absorb energy from the initially dominant
first mode as one would expect from an infinitesimal analysis due to Rayleigh. Following this, the
pattern of energy sharing undergoes a dramatic change. Energy is now exchanged primarily only among
modes 1 through 6 with all higher modes writhing about in the noise gasping for energy. Incredibly
enough, the energy sharing pattern revealed in fig. 1 for this few-body anharmonic system is remarkably
similar to that observed in the laboratory for few-body harmonic systems. Indeed, the motion of this
nonlinear system appears to be not only almost-periodic but perhaps even quasi-periodic. The first
major near-period (FPU recurrence) of the motion occurs at about ¢ = 157 fundamental periods. Here,
the energy in the fundamental mode returns to within 3% of its value at r=0! FPU immediately
recognized that these results were simply astounding. First, they appear to violate the canons of
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Fig. 1. A plot of the normal mode energies £, = (A} + w;A}) for N =32 and « = 1/4 in Hamiltonian (2). The energy in the cubic nonlinear terms
of Hamiltonian (2) never exceeded about 10% of the total energy. Mode 1 was initially given all the energy with the expectation that in time all
modes would share the energy equally among themselves. But in fact, modes 6 through 32 were forever left lying in the “‘noise™ gasping for energy.
Equally surprising is the short-term recurrence indicating that the motion is almost-periodic, perhaps even quasi-periodic.
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statistical mechanics, which assert that this nonlinear system should exhibit an approach to equilibrium
with energy being shared equally among all degrees of freedom. But even more astonishing, they seem
to invalidate Fermi’s theorem regarding ergodicity in nonlinear systems. Indeed, Fermi is said to have
remarked that these results might be one of the most significant discoveries of his career.

A preprint [1] describing these results was completed in May of 1955 and given limited distribution in
November of that year. Then catastrophe struck; Fermi died of cancer! Temporarily, the question of
what to do about the preprint faded into the background and remained there for some time. When the
matter was eventually taken up, Pasta and Ulam found themselves trapped: they clearly could not
publish without Fermi’s name on the paper, but equally they could not publish with Fermi’s name on
the paper, since he had neither read nor approved it. This dilemma was never resolved, and, as a
consequence, the FPU results were never published. However, the manuscript did finally reach the
open literature as part of Fermi’s collected works [2], which appeared some ten years after distribution
of the original FPU preprint.

One can only speculate about the impact immediate publication of this work might have had.
Although the FPU preprint received fairly wide circulation in the statistical mechanics community, it
was after all only a preprint. Perhaps because it did not bear the seal of reviewers’ and editors’ approval
nor carry the authority of a living Fermi, many readers of the preprint felt freer than usual to accept
their own handwaving conjectures as proper explanation of the FPU paradox. Some thought that FPU
had merely failed to integrate Hamiltonian (1) long enough. They suggested that the thermalization
process simply took longer than anticipated. Here, it was thought that the 3% lack of closure upon first
return seen in fig. 1 might widen to 6% or greater on the second return, and grow to 9% or greater on
the third, etc. Others believed that the weak, broken linear or polynomial nonlinear forces used by
FPU were much too simple to accurately describe physical reality. Still others remarked that, since
one-dimensional systems were commonly assumed to be incapable of exhibiting a normal thermal
conductivity, such systems were especially unlikely candidates for exhibiting a proper approach to
equilibrium. Some few even suggested that the FPU recurrence was merely a Poincaré recurrence. All
these arguments have two things in common. They resolve the FPU paradox by trivializing it, and they
offer resolutions unsupported by the slightest shred of hard evidence. Of course, the vast majority of
readers were simply puzzled by the FPU manuscript and had no explanation to offer. Regardless,
everyone found the preprint to be quite startling and equally fascinating; however, almost no one
recognized it as a harbinger of a new era in physics. But, in fact, the FPU calculations exposed a
genuine paradox whose unfolding resolution has unleashed winds of change destined to blow far, far
into the 21st century. In this personal retrospective, we shall gauge these winds and seek to place the
work of Fermi, Pasta, and Ulam in proper historical perspective.

Specifically, section 2 presents the background material needed to recognize that the FPU results do
represent a genuine paradox. Section 3 then discusses the early attempts to resolve the paradox via
integrable approximations. Section 4 at last reveals the chaotic behavior lurking just beneath the FPU
calculations by linking FPU to the classic Hénon-Heiles system. Section 5 then achieves FPU’s original
aim of demonstrating the appearance of a normal thermal conductivity and an approach to equilibrium
in a simple mechanical model. Concluding remarks are presented in the final section 6. Finally, let us
emphasize here at the outset that, while this article seeks not only to resolve the FPU paradox but to
use it as a pedagogical device for surveying, at the graduate student level, much of nonlinear
dynamics/chaos, our review is not intended to be encyclopedic. The choice of topics as well as the
emphasis assigned to them is based solely on the personal taste of the present author.
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2. Background

FPU expected the motion of their coupled oscillator systems to be stochastic*’ whereas their
computer calculations revealed the motion to be highly ordered, perhaps analytically solvable. But
should we not be startled that researchers as sophisticated as FPU could make such a misjudgment
some three hundred years after Newton? For, given the FPU Hamiitonian, does not dynamics provide
an easily applied test predicting the character of the motion which ensues? In FPU’s defense, let us
quickly admit that there is no such test, only folklore supported by prejudice. Classical mechanicians
frequently claim that the few-body problem is analytically solvable, hence nonstochastic, but they
noticeably omit defining how many is “few”. Taking the opposite tack, statistical mechanicians assert
that the many-body problem is stochastic, but they noticeably omit giving a proof. Moreover, this
folklore runs afoul of well-established fact. Poincaré [3] recognized decades ago that the gravitational
three-body problem is stochastic; equally, classical perturbation [4] theory has no difficulty exhibiting
many-body systems which can easily be solved analytically. But let us now add additional spice to this
narrative by remarking that in his youth Fermi published a theorem [5] (a synopsis of the theorem
appears in ref. [6, p. 358]) which proves that the FPU system is stochastic! In order to proceed further,
we must now develop the background which will permit us to unravel this tangle of confusions.

To begin, recall that any Hamiltonian system with N degrees of freedom always has 2N constants of
the motion but only (2N — 1) of them can be time independent [6]. Let us verify these facts. The
solution to Hamilton’s equations reads Q, = Q,(Q,y, Py, t), P, = P,(Q,o, Py, t), Where the Q’s are
position variables and the P’s are momentum variables and where k and / run from 1 to N. Now solve
any one of these 2N equations for the time ¢ and substitute the resulting expression for ¢ in each of the
remaining (2N —1) equations. These (2N —1) time-independent equations relating initial to final
(Qy, P,) define the time-independent constants of the motion. The remaining equation which was
solved for the time can be brought to the form F(Q,,, Py, @i, Pi,t)=0. F is thus seen to be a
constant of the motion despite its explicit dependence on time. Geometrically, the common intersection
of the (2N — 1) time-independent constant of the motion surfaces in phase space defines a system orbit.
The time-dependent constant F determines the starting point on the orbit.

Such a plethora of constants of the motion for Hamiltonian systems would, at first blush, seem to
imply that all Hamiltonian motion is highly ordered, nonstochastic, and perhaps even analytically
integrable. Indeed, well into this century many investigators held the belief that Newtonian systems
should be viewed not as nonintegrable but rather as not yet integrated. Alas, we now know that such is
not the case, for in general most of the (2N — 1) constants are multivalued, pathological monstrosities
which permit orbits to wander as freely over the energy surface H = E as if they did not exist.

This then suggests that by restricting our attention to Hamiltonian systems having well-behaved
constants of the motion, we might obtain a class of systems which is nonstochastic and solvable. Indeed,
integrable systems (7] are precisely of this desired type. An integrable Hamiltonian system is defined as
one having as many single-valued, analytic (in the sense of complex variable theory) constants of the
motion @, as degrees of freedom such that all pairwise Poisson brackets [®,, ®,] = 0. However, the true
meaning of integrability is exposed in the following definition [8]. A Hamiltonian H(gq,, p,) is said to
be integrable if there exists a single-valued, analytic, canonical transformation bringing H(q,, p,) to

*) Stochastic is a term frequently, but not exclusively, used in the Soviet literature to mean deterministic motion which, without any externally
imposed randomness, has some of the properties of a stochastic process. In the contemporary literature, “stochastic” has been replaced by “chaos”,
which is discussed at length in appendix A.
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the form #(%,), i.e., a function of the new momenta #, alone. Each new momentum %, is clearly a
constant of the motion; moreover, the Poisson brackets [#?,, ?,] =0 for all #,~, pairs, in agreement
with our earlier definition. But now comes the moment of truth. In the new coordinates, Hamiltonian’s
equations are seen to be integrable precisely because they have been brought to a form which is trivial
to integrate. Specifically, #, =0 and 2, = Q,(%,) have the obvious solutions #, = 2,, and 2, =
w,t+ Q,,, where w, =9#/0%,.

For integrable Hamiltonian systems whose motion is spatially bounded - the only type we shall
consider in this paper - the 9, are angles and the w, are therefore angular frequencies. In transformed
coordinates, the motion for an integrable system is easily visualized [9] since it is topologically
equivalent to motion on a torus-see fig. 2. Here for the case of two degrees of freedom, the
momentum variables %, and the position variables 2, may be regarded as labels for the actual “radii”
and angular positions on the two-dimensional toroidal surface. At fixed energy # = E, the momenta %,
and %, are not independent, leading to the toroidal nesting [10] shown in fig. 2. When the system has
N =3 degrees of freedom, system motion occurs on surfaces of N-tori, difficult to visualize or draw, but
still conceptually simple. The only unusual feature is that for N =2, each 2D toroidal surface divides the
3D energy surface into an inside and an outside; however, for N =3, the toroidal surfaces of N
dimensions can no longer divide energy surfaces having (2N — 1) dimensions. Only a bit of thought is

Fig. 2. Topologically speaking, the orbits of integrable systems may be regarded as lying on the surfaces of tori, where the momenta and angle
coordinates may be viewed as labels for radii and angles on the toroidal surfaces. Specifically, a typical torus for a two degrees of freedom system is
shown at the upper left, where momenta and angles have been written in, but one must bear in mind that, on this topological drawing, the %, and 2,
are only labels. In the lower figure, we observe that, since the two momenta are not independent due to conservation of energy, the energy surface
is striated by nested tori as shown.
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needed to verify this seemingly trivial fact, which gains in significance when one notes that it leads to
Arnol’d diffusion [11, 12] a topic to which we shall return later.

In transformed coordinates (2,, %, ), integrable system motion is quasi-periodic with as many basic
frequencies w, as degrees of freedom. Because the inverse canonical transformation carrying us from
new coordinates (2,, %?,) back to original coordinates (g,, p,) is in general nonlinear, not only the
basic frequencies w, but all sum and difference frequencies (mw, + nw,) may also appear in the motion.
To the naked eye, integrable motion involving such a multitude of frequencies can for a time look like
random noise, but then near-periodicities and the structure of its frequency spectrum reveal its
underlying simplicity. With these points in mind, it is tempting to suggest that the FPU motion revealed
in fig. 1 is integrable. There are several reasons why this conclusion would be premature, and we now
proceed to discuss one of them.

Let us now consider the class of analytic Hamiltonians having an equilibrium point (FPU, for
example), that is, Hamiltonians H(Q,, P,) which can be expanded in convergent power series about
their equilibrium points. We may then require that the leading quadratic terms have the form
1 ¥ (P} + w2Q}), again like FPU. It then follows that each such Hamiltonian is one to one with its
unique set {C,} of power series expansion coefficients, where the subscript symbol k denotes a
2N-dimensional vector subscript having integer components and where N is the number of system
degrees of freedom. We are now at liberty to regard each Hamiltonian H(Q,, P,) as a point in an
infinite dimensional, Euclidean space in which the kth mutually perpendicular axis bears the coordinate
C,. This prologue then permits us to state the following deep theorem due to Siegel [11].

Theorem. In every neighborhood of such an analytic Hamiltonian, whether integrable or not, there
exists a nonintegrable Hamiltonian.

This theorem provides our first glimpse of the fact that nonintegrable systems are “thick as fleas” in
C,-space while integrable ones are, relatively speaking, “scarce as hen’s teeth”. Specifically, it tells us
that, if we slightly change the expansion coefficients of an integrable Hamiltonian, we in general obtain
a nonintegrable one whereas slight changes in a nonintegrable system simply shift it into another
nonintegrable system.

An intuitive understanding of this theorem may be gained from an examination of the phase plane
(p, @) portrait for an integrable pendulum as shown in fig. 3. Here the closed ovals represent simple
oscillations; the top and bottom curves in the figure represent motion in which the pendulum goes

p\/
%
/\/\

Fig. 3. The familiar phase space plot for a plane pendulum.
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through a never ending succession of 27 rotations. But let us focus on the curve which lies at the border
between these two types of motion. Here the pendulum departs its uppermost point of unstable
equilibrium only to asymptotically return to that self-same position. Intuition immediately tells us that
the smooth joining of the departing segment to the arriving segment is wildly improbable, for the final
asymptotic return is equivalent to balancing a pencil on its point.

Integrable systems are rare first because their potentials must be such as to cause the smooth joining
of departing and arriving curves for every unstable equilibrium point and second because such joining is
an extremely difficult feat in a noisy world. The net effect of even the slightest perturbation is to cause
the departing curve to intersect the arriving curve at nonzero angle, which, as Poincaré recognized, is a
signature of nonintegrability. Moreover, even the slightest perturbation can increase the zero intersec-
tion angle of an integrable system; however, a finite perturbation is required to bring a finite angle to
zero. Consequently, non-integrable systems are dense in C,-space; equally, each nonintegrable system
is surrounded by at least a small neighborhood in C,-space devoid of integrable systems. Therefore one
cannot, in general, approximate arbitrarily well the behavior of a nonintegrable system via judicious
choice of an integrable system. On the other hand, in that rare circumstance when a nonintegrable
system does lie near an integrable one, the behavior of the two will appear identical until computer
accuracy exposes the difference.

With these results in hand, we can now appreciate why widespread integrability among the FPU
systems would represent a coincidence so fortuitous as to border on the miraculous. Granted, any one
FPU system, such as that in fig. 1, might be integrable, but FPU investigated many systems having
distinct quadratic, cubic, or broken linear force laws, always obtaining results similar to those shown in
fig. 1. Thus, although the FPU systems may be close to being integrable, in some sense, they are most
certainly not all precisely integrable. But if they are not integrable, into what category do they fall?
Because of a theorem he had proven some decades earlier, Fermi believed that FPU systems fell in the
ergodic category. Recall that we are here discussing conservative systems whose orbits all lie on energy
surfaces. A system is said to be topologically ergodic*’ on an energy surface provided provided almost
all system orbits are everywhere dense on that energy surface. The notion of metric ergodicity*’ (on an
energy surface) is more stringent and requires that all measurable sets, invariant under the dynamical
flow, have measure zero or one. Metric ergodicity implies the physical definition**’ of ergodicity, which
may be written

!me ! de G[q,(7), p(7)] =quk dp, G(4;, pe) - 3)

Reading from left to right, eq. (3) asserts that time average of a function G[q,(t), p,(?)] equals its
phase space average taken over an energy surface. To summarize, Fermi believed that the time
evolution of FPU systems should be such as to render states of equal energy equally likely. But in view
of the FPU computer results, what deceived Fermi into thinking that weakly nonlinear oscillator

*) A dynamical system is said to be topologically ergodic if all its orbits are dense on the energy surface, excepting perhaps an orbital set having
measure zero. A dynamical system is said to be metrically ergodic provided the only measurable invariant sets on the energy surface have measure
zero or one. Less technically, metric ergodicity means that the energy surface cannot be divided into two nonzero regions such that orbits always
remain in their respective regions.

**) Consult any good statistical mechanics text, e.g., ref. [6].
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systems could be ergodic? In order to illuminate this point, we must first discuss Poincaré’s celebrated
theorem on constants of the motion.

Poincaré sought to discover why, for an isolated system with N degrees of freedom, the energy
occupies such a privileged position among the (2N — 1) available constants of the motion. He elected to
consider the quite general set of analytic Hamiltonians given by H = H(P,) + uH,(Q,, P,), where H,
is integrable, p is small, and where the unperturbed (u =0) frequencies of the H,-motion, given by
w, =9dH,/0P,, are functionally independent. Under these conditions, Poincaré proves [14] using
arguments we shall sketch in just a moment, that there exists no constant of the motion ®(Q,, P,, p)
analytic in Q,, P,, and u other than the energy H itself. Alternatively stated, the perturbation u H, in
general “destroys” and does not continue the N analytic constants of the motion which exist for the
integrable H,. Using precisely the same assumptions as Poincaré, Fermi later presented a proof that the
above set of Hamiltonians would in general be ergodic. But are the FPU Hamiltonians, in fact, of the
Poincafe type?

Now it is certainly true that the FPU Hamiltonians have the Poincaré form H = H;+ pH,, but the
frequencies w, of the integrable harmonic oscillator Hamiltonian H, are constants and therefore not
functionally independent. Nonetheless, there does exist a canonical transformation, whose exact form
need not concern us here, for which the transformed FPU Hamiltonians may be shown to satisfy all the
Poincaré conditions. Thus, the contradiction is real. Theory states that the FPU systems should under
no circumstance exhibit the behavior revealed by the computer. To resolve this conflict, let us examine
the theorems of Poincaré and Fermi in a bit more detail.

Poincaré starts with Hamiltonians of the type H = H, + wH,. He then seeks constants of the motion
of the form

@(q, p, p) = 20 1o (q, p),

where ¢ and p denote all position and momentum variables and where all ¢,(g, p) are analytic
functions of ¢ and p. Specifically, since @ is a constant of the motion, he inserts the above expressions
for H and @ into the Poisson bracket equation [ H, @] = 0 and then insists that the coefficient of each w
equal zero. This procedure yields [H,, ¢,] =0 at zeroth order and [H,, ¢,] = —[H,, ¢,_,] for all k>0,
a set of equations which can be solved sequentially for all ¢, once ¢, is specified, where ¢, of course is
any arbitrary constant of the motion for H,. The Poincaré procedure thus seeks to analytically continue
¢, to nonzero values of u. The proof that this continuation is impossible in general is straightforward
but quite lengthy. Here, we confine ourselves to illustrating the crucial element in the proof. If, for
example, we seek to continue the constant of the motion ¢, = p>, we typically encounter terms which
have frequency denominators of the type illustrated by

2
q:D,
d=p’+ +oee, 4
Prt 20,(py) — wy(p,) @)

where w,(p,)=0dH,(p,)/dp,. The denominator in eq. (4) is zero along some hypersurface in phase
space. Moreover, in general a countable infinity of frequency denominators X m, @, will appear in
higher order which are zero along a dense set of hypersurfaces in phase space. But an analytic function
cannot be infinite at a dense set of hypersurfaces; in consequence, no analytic constant of the motion
exists, in general, other than the obvious: any function of H itseif. The above is but one example of the
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ubiquitous small denominators which, as Poincaré has shown, make the divergence of astronomical
perturbation series the general case. Although numerous papers have appeared over the past ninety
years claiming to circumvent or eliminate the small-denominator problem, small denominators repre-
sent physical, nonlinear resonances between degrees of freedom. They are innate and cannot be
eliminated or circumvented; indeed, they are intimately connected with chaos*’ as we show later.

Fermi’s proof [5,6] that Hamiltonian systems are, in general, ergodic is based on Poincaré’s
nonexistence theorem. Specifically, Fermi begins by assuming that the Poincaré systems are not
ergodic. In consequence, at least two distinct, nonzero regions invariant under the Hamiltonian flow in
phase space must exist. Fermi now asserts that this fact implies the existence of an analytic, orbit
bearing surface which separates the invariant regions. In turn, the existence of this surface implies the
presence of an analytic constant of the motion for the Hamiltonian H, contrary to Poincaré’s theorem.
Fermi therefore concludes that the Poincaré systems are, in fact, ergodic.

Poincaré’s theorem has withstood the scrutiny of nine decades; it is Fermi’s theorem which contains
the flaw. Nonetheless, Fermi’s error reflects thinking typical of all physicists prior to 1950. Fermi
therefore quite forgivably assumed that the dividing surface between invariant sets was analytic because
the behavior of all the well-known physical systems exhibited precisely this behavior. In fact, it was not
until the announcement by Kolmogorov in 1954 of what is now called the KAM theorem [15] that
physicists were forced to abandon their notions of smooth analyticity. Expressly, KAM prove that the
invariant regions for most Poincaré systems are disjoint sets which fill most of the allowed phase space,
not surprisingly therefore, the surfaces separating these invariant regions obviously are intricately
complicated, nonanalytic entities. Further details regarding the KAM theorem will appear later. But
recognition of Fermi’s error does not provide resolution of the basic issue. For, if ergodicity as well as
higher forms of chaos does not reside in nonlinear oscillator systems, then where does it “hang out”?
We begin our slow walk toward the answer to this question with a discussion of various attempts to
explain FPU via integrable approximation.

3. Integrable approximations

In the late 50s, the present author sought to explain [16] the lack of equipartition revealed by the
FPU systems. I argued that the FPU degrees of freedom could exhibit widespread energy sharing only if
all were resonantly coupled. But in order for the weak resonant couplings in the Hamiltonian to be
effective, the harmonic frequencies given by w, =2(K/M)"'? sin(kw/2N) would have to obey resonant
conditions of the form X m, w, =0. But for the FPU w,-set, precise resonant conditions L m,w, =0 are
satisfied if and only if all the m, = 0. Strictly speaking, this is true provided N is prime or a power of 2,
the only values used by FPU. For other values of N, although a few resonant frequency conditions are
satisfied, the FPU couplings fail to excite even these. Indeed, the only influential resonances are the
approximate ones which occur along the small-argument, “straight-line” portion of sin(k7/2N) where
0, =~w,/2=w,/3=:-=wn/k=---, with the approximation becoming poorer as one reads to the
right. Moreover, it is precisely these decreasingly effective resonances which are responsible for the
energy sharing that occurs in decreasing amounts as mode number in fig. 1 increases. Thus far, my

©) At this point, the reader is free to regard chaos as meaning little more than erratic, disordered, seemingly unpredictable. However, we
perhaps should note that a system whose orbits are chaotic over its entire energy surface is both ergodic and mixing, where a system is said to be
mixing if every small cell in phase space evolves into an increasingly thin filament which spreads uniformly over the entire energy surface.
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arguments have involved only the physical notion of resonance without any hint of integrable
approximation; they would therefore be expected to contain a substantial amount of truth. But then
seeking analytic support, I resorted to integrable approximation in the form of a very primitive,
divergent perturbation technique which, at least to a mother’s eye, gives semi-qualitative agreement
with the FPU calculations - compare my fig. 4 with FPU’s fig. 1.

These results, first published in 1961, came as something of a surprise to various of my colleagues
who, unbeknownst to me, were diligently polishing their own explanations of FPU. Consequently, they
were not shy in exposing the glaring defects in my explanation. They were most troubled by my use of
the unperturbed harmonic FPU frequencies when, in their view, the FPU perturbations were so large
that only the perturbed frequencies could be relevant. As response, in 1963 I published a paper [17]
which transformed certain of the FPU Hamiltonians to normal mode coordinates and then treated the
unperturbed frequencies w, as free parameters. Figures 5a, b compare the standard FPU system for
N =5 with the “same” system whose unperturbed frequencies have been slightly shifted. Bringing the
unperturbed FPU frequencies “‘on resonance” provides a dramatic increase in energy sharing. So much
for the insignificance of unperturbed frequencies. Regardless, it was Freeman Dyson who provided the
most penetrating comment, “Ford’s explanation cannot be regarded as the complete answer”. Indeed,
Dyson’s comment applies equally well to all efforts at integrable approximation, as will become
apparent in the sequel.

Also in 1963, E. Atlee Jackson [18] used a classical perturbation approach on the FPU systems which
was similar to quantal Wigner—Brillouin perturbation theory. Specifically, the denominators in Jack-
son’s calculations involve the perturbed frequencies rather than the unperturbed frequencies used in my
computations. This modification yields significantly improved agreement with the FPU computer
results — compare Jackson’s theoretical predictions of fig. 6 with the FPU numerical results of fig. 1. Not
only are Jackson’s normal mode curves approaching the correct shape, but the recurrence time is also
being approached. Jackson’s results thus make it extremely clear that the FPU systems are, in fact, near
an integrable system, but his series are nonetheless just as divergent as mine. Moreover, contact has not
yet been made with Siegel’s theorem or Poincaré’s theorem. On that note, we turn to the last and by far
the most renowned of the integrable approximations.

1 t

Fig. 4. The time evolution of the first three modal energies for the N =32 FPU system of fig. 1 but here computed using a rather crude classical
perturbation theory. The agreement is at best qualitative.
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Fig. 5. These figures present a comparison of energy sharing as it occurs in two, closely related five-particle systems. (a) The modal energy curves
for an N = 5 FPU system. Here one notes the typical decrease of modal energy sharing as mode number increases. (b) Modal energy sharing of the
“same”’ system as that in (a) except that for it the N = 5 FPU modal frequencies have been shifted slightly to bring them onto precise resonance. The
increase in energy sharing is quite dramatic, emphasizing that the lack of wholesale energy sharing in the FPU systems is heavily influenced by the
absence of internal resonances among the unperturbed FPU harmonic modal frequencies.
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Fig. 6. An improved perturbative calculation for the time evolution of the modal energies for the N = 32 FPU system of fig. 1 obtained by Jackson
[18]. Comparing this graph with that of fig. 1, one perceives the existence of at least semi-quantitative agreement between numerical and analytical
results. Indeed, one now anticipates that a sufficiently sharpened perturbation theory could provide a quite accurate solution to the FPU problem.
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For several years, Martin Kruskal and Norman J. Zabusky had sought a continuum approximation to
FPU [19]. They began by noting that the normalized equations of motion for the FPU system of eq. (1)
may be written

0c= (et =204 + Qi)+ @l(Que1 = Q)" ~ (Qu — Q)] (5)
=(Qur1 ~2Q0c + Qe )1+ Qi) — Qi) (6)

In the lowest-order continuum limit, eq. (6) takes the form
Q,=0Q,. te0.0,=01+£0,)0,,, (7)

where subscripts denote the usual partial derivative notation. But now eq. (7) may be viewed as just an
ordinary wave equation whose wave speed ¢ depends on its spatial derivative Q,, i.e., ¢’ =(1+ £Q,).
Typical behavior generated by eq. (7) for positive ¢ is seen in fig. 7, where an initial asymmetric pulse
propagates to the right until its leading edge develops a vertical shock front, at which point eq. (7) loses
validity. Nonetheless, prior to formation of the shock, eq. (7) provides a quite reasonable description of
the FPU modal behavior. Kruskal-Zabusky (K-Z) thus sought ways to avoid the shock formation. In
many physical systems, shocks are prevented by introducing dissipation; indeed, its inclusion leads to
the so-called Burgers equation. Since FPU is conservative, K-Z elected to eliminate shock formation
by introducing dispersion into the eq. (7) approximation to FPU. Specifically, they wrote

Qrt = Qxx + EQxQxx + BQxxxx ‘ (8)

For both convenience and simplicity, K~-Z now insist on periodic boundary conditions, restrict their
attention to waves traveling in one direction only, and elect to sit in a frame moving with normalized
speed ¢ = 1. After replacingxbyo=x—t,tbyr=¢t,Q by U= 10, = 1Q, ineq. (8), and neglecting
terms proportional to &>, they obtained the celebrated Korteweg—deVries (KdV) equation

U-r + UUa + 62Uo’o’a = O ? (9)

which is now known to be a completely integrable partial differential equation, meaning that eq. (9) can
be derived from a Hamiltonian that is a function of its momenta alone.

K-Z then numerically integrated eq. (9) using periodic boundary conditions and one cycle of a
cosine as initial condition. Much to their surprise, the initial cosine shape evolved into a finite number
of relatively sharp pulses —see fig. 8 —that moved at distinct speeds about their periodic path like

:>/\x

Fig. 7. This rough sketch shows an initial, asymmetric pulse time evolving to the right until its leading edge develops a vertical slope.
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Fig. 8. The numerically integrated solution of the KdV equation for an initial condition taken as one period of a cosine, which here appears as the
dotted curve. The shape of the time-evolved curve at a later time is shown as the dashed curve. Finally, the solid curve reveals that the initial cosine
excitation has broken up into eight solitons which move with speeds proportional to their heights. The various FPU recurrences now find their
explanation in terms of the recurrences which occur as these eight solitons move with incommensurate speeds around a circle,

_ (A)e-sees t=0 !
(Bl--= t=tg
(C)—— t=361,

.

runners on a track. Upon “collision”, the pulses would exhibit a nonlinear superposition during overlap
and then all would emerge unchanged in shape or speed. The almost-periodic behavior of the FPU
systems could now be understood at an especially clear, intuitive level. The first full recurrence of the
FPU motion occurs when all the pulses approximately overlap, generating a near-return to the initial
cosine shape. At half-recurrence, the pulses overlap in two distinct groups forming the second harmonic
shape, at one-third recurrence, three distinct groups of pulses overlap, etc. For long-wavelength
excitations where the continuum approximation might be expected to provide reasonable results,
approximating FPU by KdV provides qualitative to quantitative agreement, depending on the quantity
being considered. However, if one wishes to approximate the modal curves of fig. 1, the Jackson series
yield results comparable to and perhaps better than those of K-Z. For short-wavelength initial
conditions, the K-Z approach is, of course, simply not applicable. Therefore, in regard to the FPU
problem, KdV is highly ingenious and delightfully intuitive, but in the end it is nothing more than
another integrable approximation.

However in the process of developing their explanation of FPU, Kruskal and Zabusky were led to
provide insight into a much larger class of problems. Indeed, they were the first who turned the FPU
paradox into discovery, for the pulses mentioned just above are, in fact, the celebrated K~Z solitons,
now found to be ubiquitous in nature, while the KdV equation has become the paradigm for an
expanding class of completely integrable nonlinear partial differential equations. Over the years, the
terms inverse scattering, Lax pairs, breathers, kinks, soliton—antisoliton pairs, and the like have
become household words in mathematical physics, reflecting but a part of the “industry” founded by
Kruskal and Zabusky. All these matters have been covered in such detail at countless conferences and
in review articles beyond number that almost nothing remains unconsidered. However, there are
perhaps a couple of significant yet frequently overlooked points worthy of mention. Specifically, why is
the soliton so ubiquitous and why does it occur at all?

The following discussion is intended to provide an intuitive understanding of only the K-Z soliton,
why it occurs and why it is observed in so many physical systems; readers desiring to know more about
the zoology of contemporary solitons are referred to the vast literature which exists on this topic.
Consider now the innocent looking one-dimensional array of equi-spaced, equi-mass points sitting at
rest in fig. 9a, where the leftmost mass, labeled 1, has just been given a velocity 7" to the right. Upon
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Fig. 9. (a) An array of equal mass coins sitting at rest until the leftmost coin is given a velocity ¥ to the right. (b) The situation after particie one has
collided with two, two with three, and three is headed toward four. (c) The sequential displacement of particles one step to the right may be
represented by the right moving square wave of displacement shown here. (d) Finally, by taking the derivative of the square wave shown in (c) as is
customary in soliton theory, the most primitive of all solitons is revealed; the soliton is here seen to result from nothing more than a hard-core
interaction.

colliding with mass 2, mass 1 comes to rest at the original position of 2, while 2 moves off with velocity
7" to the right; 2 then comes to rest at the position of 3 as 3 heads with velocity %" toward 4. Figure 9b
shows this latter situation for comparison with that of fig. 9a. One may describe this motion as
essentially that of a square wave moving to the right. Actually, the leading edge of the wave is not
vertical but sloped; however, this discrepancy disappears at large ¥ and/or small interparticle spacing.
In the notation of eq. (8), the square wave Q(x) appropriate to fig. 9b appears in fig. 9c. Finally, by
taking the derivative U = Q, invoked by the K-Z theory, we easily obtain the §-function of fig. 9d,
which exposes the primitive, archetypical essence of the soliton. Indeed, the soliton is here clearly
revealed to be a hard-core, billiard ball, knock-on rowdy. Without the hard-core interaction, or at least
an asymmetry in the pair potential, the K-Z soliton cannot exist. The billiard ball analogy makes it
clear that this soliton is a localized excitation only in one dimension, although there can be plane wave
solitons in two and three dimensions.

Finally, we at last have no trouble recognizing that the soliton is as ubiquitous as hard-core
interactions. But now the inverse question arises: if they are so common, why were not solitons
discovered centuries ago? The answer is, in fact, quite astonishing, but depth psychology lies beyond
the scope of this article. Instead, let us move toward the land where solitons decay, integrable
approximations falter, and the laws of chance reign supreme.

4. The transition to chaos*’

When the FPU calculations failed to exhibit the expected chaos, there was no scarcity of people
offering ready explanations. Of these, the argument that the FPU force laws were too simple lost

*) We now enlarge the meaning of chaos to include the notion of exponentially sensitive dependence of final state upon initial state, which
implies that two initially close phase space states separate exponentially with time. It also implies that the slightest imprecision in the present state
fogs a system’s memory of its distant past and vision of its distant future.
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credibility when Northcote and Potts [20] found statistical behavior in a one-dimensional array of
harmonically coupled hard rods. The notion that the FPU recurrence might simply be a Poincaré
recurrence was demolished by the estimates of Hemmer et al. [21] who established that the relevant
Poincaré times increase exponentially with particle number N while the FPU recurrence times grow like
a power of N. The suggestion that one-dimensional systems are poor candidates for chaos runs afoul of
the positive results obtained by Casati et al. [22] who demonstrated that 1-D systems can, in fact,
exhibit a normal Fourier thermal conductivity. One of the more persistent beliefs held that the thermal
relaxation times for the FPU systems were too long to be observed during the short integration runs
made by FPU; big Jim Tuck and Mary Menzel (née Tsingou) [23] buried this conjecture under many
hours of numerical computation — a sample is shown in fig. 10. Finally, many researchers had begun to
suspect that the impressive success of integrable approximations meant FPU would eventually be shown
to be integrable. Let us now dispel this last illusion by exposing an FPU transition to chaos.

Consider a three-particle FPU system having periodic boundary conditions which is governed by the
Hamiltonian

H=3 S P 433 Q= 0+ 5 2 Qe - 0 (10)

where all sums run from k=1 to 3 and where Q,= Q,. After introduction of a canonical change of
variables to harmonic normal mode coordinates (2,, ?,), Hamiltonian (10) takes the form

H=1(P+ P2+ P+ 1 (3224320 +(3a/V2)(2,2:-10)). (11)
FPU
= RECURRENCE
x N=16 k“\\\

(o] 10 20 30 40 50
wyt/2m

FPU
SUPER_ RECURRENCE

ENERGY (arbitrary units)

wyt/2m

Fig. 10. In the upper part of this figure is seen the standard energy sharing between normal modes for an FPU system (here N = 16) integrated
through one recurrence. By greatly extending the integration interval as shown in the lower figure, Tuck and Menzel 23] exposed a superperiod of
recurrence. Their calculation leaves little doubt regarding almost-periodicity in the FPU motion.
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Note that the coordinate 2, locating the center of mass is absent from #, implying that the center of
mass moves with constant momentum %,. Thus, transforming to the center of mass frame and setting

t=13, Q,=(V2/a)q,, and 2, = (V2/a)q,, we obtain
H=3(pi+p2+ a1+ 4) + 419, ~ 34 (12)

But Hamiltonian (12), which is canonically equivalent to the FPU system of eq. (10), is the celebrated
Hénon-Heiles Hamiltonian [24], whose chaotic properties have been exhaustively investigated. There-
fore, as we now review the chaotic behavior exhibited by the Hénon-Heiles system, we are
simultaneously exposing the chaos hidden from view in the original FPU resulits.

Hénon and Heiles studied the global behavior of orbits for the bounded motion of Hamiltonian (12)
via a Poincaré surface of section constructed as follows. Clearly, an orbit for Hamiltonian (12) must be
viewed as lying in a four-dimensional (q,, q,, p;, p,) space. Yet because the energy H=FE is a
constant of the motion, orbits can in fact be drawn in a three-dimensional (q,, g,, p,) space, for, once
4., 4,, P, are given, then p, =0 (or p, <0) is uniquely determined by E = E(q,, q,, p,, p,). But now
note that the (q,, p,) plane provides a cross section —a plane Poincaré surface of section — of this
(g:> 4,, P,) space. Hence, we may obtain a global picture of orbital behavior at each energy by
determining each orbit’s intersection points with the (q,, p,) plane, i.e., (g,, p,) points on an orbit at
which ¢, =0 and (to remove ambiguity) p, >0. Now, were the Hénon—Heiles system chaotic with no
constants of the motion other than the total energy, then the (g,, p,) plane intersection points for each
orbit would be expected to form an erratic splatter with no apparent pattern. On the other hand, if the
Hénon-Heiles system were integrable having an analytic constant of the motion @ = @(q,, q,, p,, p,)
in addition to the energy, then by solving the energy E for p, >0 and thence placing this p, into ¢, one
finds @ = ®(E, q,, q,, p,), an equation for a two-dimensional surface embedded in a three-dimension-
al (q,, q,, p,) space. But now by setting ¢, =0 in &, we may determine the analytic curves
¢ = d(E, q,, p,) in the (q,, p,) plane upon which the orbital intersection points must lie. Thus, no
matter whether integrable or chaotic, Hénon-Heiles had only to numerically integrate the orbits of
Hamiltonian (12), determining (g,, p,) intersection points, in order to establish the character of the
system motion at each desired energy value. As the energy grows the cubic nonlinear terms in eq. (12)
increasingly perturb the harmonic quadratic terms. Thus, Hénon—Heiles use energy as their perturba-
tion parameter.

Figure 11 shows the (g,, p,) Poincaré surface of section at energy E =1/12 for the Hénon-Heiles
Hamiltonian (12). Here, curves seem to exist everywhere, indicating the possibility of an additional
constant of the motion and the integrability of Hamiltonian (12). Note that each curve in fig. 11 is made
up of intersection points generated by a single orbit. But now what happens if the energy is increased,
permitting the nonlinear terms in eq. (12) to grow in size relative to the linear ones? Figure 12 at
E =1/8 provides the answer. Curves persist in the neighborhood of the stable fixed points along the g,
and p, axes (corresponding to periodic orbits), but a region of erratic dots appears between these stable
areas. In fact, all the orbits in this region generate a diffuse spray of points. Moreover, throughout this
region two close initial conditions yield orbits whose separation distance grows exponentially with time
whereas separation distance for integrable systems exhibits power law growth. Turning now to fig. 13,
we see that the small apparently random array of orbital intersection points in fig. 12 has grown to fill
almost all the available area at energy E =1/6. The complete “order” of fig. 11 has now turned into the
complete “chaos” of fig. 13. With these three simple figures, Hénon-Heiles banished forever the
clockwork universe popularized centuries earlier by Laplace. Indeed, the elegant simplicity and the
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Fig. 11. The first of three figures which originally appeared in the Fig. 12. The genuine surprise provided by the Hénon-Heiles calcula-

celebrated paper by Hénon and Heiles [24]. Here we see a plot of the
Poincaré surface of section for the Hénon-Heiles conservative system
at system energy E = 1/12. Curves appear to exist everywhere in the
permitted area, indicating possible integrability.

tions first appeared in this figure for E=1/8. All this “random
splatter” of dots was generated by a single orbit. All hope of
integrability now disappears. Indeed, since Hénon and Heiles demon-
strated the sensitive dependence of orbits lying in this “splatter”

region, this figure provides an early illustration of the transition to
chaos in a Hamiltonian system with only two degrees of freedom.

convincing clarity of the evidence for a transition to chaos in their two-body system has made the
Hénon-Heiles paper the most frequently quoted work in all nonlinear dynamics/chaos. But let us not
forget that the chaos of Hamiltonian (12) is also the chaos of the FPU Hamiltonian (10), and that the
transition to chaos seen in figs. 11-13 is also the transition to chaos veiled by the FPU calculations.

Confronted with the chaos occurring at the higher energies for Hamiltonian (12), a number of
investigators turned to integrable approximations in the hope that their failure might become obvious at
or near the transition to chaos, but of course, such methods cannot describe chaos itself. In this regard,
it is, in retrospect, perhaps a tribute to Laplace that those who invoked integrable approximations to
describe FPU were content to look no further. But regarding Hénon-Heiles, perhaps the most
illuminating study based on an integrable approximation was that conducted by Gustavson [25], who
used the elegant perturbation theory of Birkhoff [4] to compute a power series in g, and p, (calculated
to eighth order) for an additional constant of the motion. In the Gustavson-Birkhoff procedure, the
perturbation parameter is neither Poincaré’s u nor Hénon-Heiles’ E; it is rather the order of the terms
in the power series expansion, which are assumed to decrease in size as the order increases. The
additional constant of the motion Gustavson obtained permitted him to obtain analytic (g,, p,) surface
of section plots. His entire approach was, of course, feasible only because large computers could
perform the lengthy symbol manipulations in a reasonable time interval. Gustavson’s comparison of
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P

Fig. 13. This Poincaré surface of section at system energy E = 1/6 provides icing on the cake showing that the system becomes almost totally chaotic
slightly before the energy for unbounded motion is reached.

perturbation theory with numerical integration appears in fig. 14. The comparison is for energies
E=1/12,1/8, and 1/6 as one would expect. Note that perturbation theory provides smooth curves at
all three energies; disappointingly it thus gives not the slightest hint of its own failure, not even at the
higher energies. In fact, though not apparent in fig. 14, perturbation theory cannot be truly accurate at
any energy, for the Birkhoff power series constructed by Gustavson, despite the fact that it gives fair
agreement at £=1/12, has been shown to be not only divergent but apparently an asymptotic
representation of a nonexistent constant of the motion! In order to remove a bit of the mystery from
these remarks, let us present a brief outline of what is happening in both Hénon-Heiles and FPU.
Details as well as rigor will be supplied later.

The Hénon—-Heiles paper presented a graph showing the fractional amount of area in each surface of
section containing smooth curves as a function of energy. To the accuracy of their calculations, a plot of
this fraction initially moved along a horizontal line at the value one, but at about E =1/10 the fraction
began an abrupt fall toward zero along a rapidly descending straight line. The discontinuity near
E =1/10 lent support to the notion that chaos first appears at the discontinuity point. However, more
accurate surfaces of section would have revealed a slow, smooth decrease in the curve bearing area
from unity at £ =0 to almost zero at E = 1/6. Nonetheless, this smooth curve would be almost flat
below E =~ 1/10 and would display a rapid falloff to zero as E— 1/6. In short, both Hénon-Heiles and
FPU appear integrable as long as chaos lies below the level of computer accuracy, but increasing energy
(nonlinearity) finally broadens the chaos regions until they can be seen by even a low-precision
computer.

Thus it was not integrating over too short a time interval which hid the chaos innate to the FPU
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Fig. 14. After automating the required symbol manipulation on a computer, Gustavson [25] determined a power series expansion for a formal
constant of the motion for the Hénon-Heiles system valid through eighth order. With this constant of the motion, Gustavson then computed
analytic surface of section plots for comparison with the numerical integrations of Hénon-Heiles. The results are shown here. The agreement
between Gustavson and Hénon-Heiles is quite satisfactory in all those regions where Hénon-Heiles find curves, elsewhere the analysis of
Gustavson fails without warning.

systems but the lack of computer accuracy and/or the lack of sufficiently strong nonlinearity. But an
inquisitive reader will surely wonder why the integrable approximations work so well at low to
moderate energies and/or why the nonlinearity in the FPU Hamiltonian (10) [or the Hénon-Heiles
Hamiltonian (12), for that matter] must become so large before its chaos becomes visible to a
single-precision computer? When, as here, the Hamiltonians under consideration are of the form
H=H,+ pH,, the uninitiated would most certainly expect the perturbed motion of H to closely
resemble that of the unperturbed H, when u H, is relatively small. However, this expectation becomes
less and less reasonable as pwH, grows into the moderate range. Yet the FPU and Hénon-Heiles
Hamiltonians still appear integrable for energies greater than our wildest expectations. Why? It can be
immediately stated that the perturbed motion is not even close to that of the unperturbed harmonic
oscillator H, of egs. (11), (12). The surface of section for an independent oscillator E = }(p* + w’q®)
would consist of circles about the origin. There is not a hint of such behavior in fig. 11 nor in fig. 15 at
extremely low energy. We thus need a nonlinear Hamiltonian close to the two we consider. The
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Fig. 15. In both the FPU and the Hénon—Heiles systems, the transition to chaos does not occur until the energy increases rather far away from zero.
There must be some nearby integrable system causing this behavior, but it is most certainly not that of independent harmonic oscillators from which
both FPU and Hénon-Heiles start at E=0, as is shown by this very low energy surface of section for the Hénon-Heiles system. Indeed, the
oscillators shown in this figure are sharing energy.

nonlinear KdV equation is one respectable candidate. Another is the Hamiltonian which results after
changing the very last sign in eq. (12); this renders eq. (12) both integrable and separable. Finally,
perhaps the most attractive candidate of all is the three-particle, “‘exponential” Toda Hamiltonian [26]

1
H= E 2 Pi + % (2 e(Qk+1‘Qk)) -3, (13)

where the index & runs from 1 to 3 and where periodic boundary conditions imply that 0, = Q,. There
is a legitimate sense in which the N-particle Toda system may be regarded as a discrete version of the
KdV equation. Equation (13) is both integrable and exhibits K-Z solitons. Finally, if one eliminates the
translation mode in eq. (13) and then expands the resulting two degrees of freedom Hamiltonian in a
power series retaining terms only through third order, the FPU/Hénon-Heiles Hamiltonian of eq. (12)
is obtained. If one eliminates the translation degree of freedom from eq. (13) but does not expand in a
series, the resulting two degrees of freedom system yields surface of section plots which are only
distorted versions of fig. 11. We cannot rule out the existence of a nonlinear integrable system closer to
FPU/Hénon-Heiles than the Toda system, but it is perhaps close enough for our purposes.

Until now we have exposed only pieces of the FPU puzzle. Many questions have been answered but
many yet remain. In a sense, a pattern has formed but a satisfying picture has not emerged. Thus, let us
now complete the puzzle by adding one final unifying piece. Specifically, let us now focus our attention
on a theorem announced without proof by A.N. Kolmogorov at the 1954 Conference of Mathemati-
cians in Amsterdam, which, though no one noticed at the time, could have explained the lack of chaos
observed by FPU a priori. But Kolmogorov’s theorem (see appendix D of ref. [27]), like the FPU
preprint, attracted little notice in a busy world. Indeed, realization of the full significance of this
theorem was further impeded by the extremely lengthy and highly technical independent proofs
published by Arnol’d [28] in 1963 and by Moser [29] in 1962 some ten years after Kolmogorov’s original
announcement. Moreover, many of that handful of physicists who took the time to cut through the
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hedgerows of unfamiliar technical jargon concluded they were learning more about the convergence
problems of celestial mechanics than they wanted to know. However, much, much more than the
problem of small denominators in celestial mechanics was involved in what we now call the KAM
theorem. Let us digress briefly to discuss this issue.

By the end of the last century, if not before, it was clear to any scientist who bothered to examine
the matter that there were two quite contradictory views regarding the character of the motion for
Hamiltonians H = H,+ pH,. One view assumed that the perturbation pwH, serves only to add a ‘“few
harmonics” and slightly shift the frequencies of the H, motion, thereby justifying the use of standard
perturbation theory. The other accepted the notions of statistical mechanics which assert that even the
weakest uH, is sufficient to convert the integrable motion of H, to an ergodic motion in which states of
equal energy are equally likely. Given such disparate views, it is amazing that no debate raged during
the early decades of this century. In retrospect, it seems that this was a classic case of people in glass
houses fearing to throw theoretical stones, because each side had only nonrigorous, a posteriori
justification for their positions. Indeed, before KAM there was no rigorous answer to the question,
“Under what circumstances does the motion of H = H,+ uH, closely resemble the motion of H,?”
Moreover, the evidence accumulated over many decades prior to KAM, of which FPU is but a small
part, seemed so contradictory that resolution was not seen even on a distant horizon. Nonetheless,
work on the FPU part of the overall puzzle led Kruskal and Zabusky to discover the soliton and thence
to found a whole new area of mathematical research. Moreover, the title of the present paper would
have been even more appropriate had FPU served as motivation for the KAM theorem; unfortunately,
the actual timing of events proves otherwise. But even so, while FPU did not directly influence KAM,
they did much to prepare the fertile soil in which the KAM theorem and nonlinear dynamics/chaos
eventually grew.

Given the above remarks as prologue, let us now state the KAM

Theorem. Given an analytic Hamiltonian H = H, + p H, satisfying the usual Poincaré assumptions, (i)
H, is integrable, (ii) u is sufficiently small, and (iii) det|6’H,/aP, 9P, =det|dw,/dP,|#0 (where
w, = 3H,/dP,), then there exists a nowhere dense*’ set of H, tori which are only slightly distorted by
the small u H, perturbation. Moreover, the measure**’ of this nowhere dense set of “preserved” tori is
nearly that of the allowed phase space. The complementary set of “destroyed” H, tori is dense but has
small measure.

With this theorem, KAM abandoned all hope of showing that every H, torus will, under the
influence of uH,, simply distort into a perturbed torus of the full Hamiltonian, for they knew full well
that the dense set of H,, tori having all rational frequencies w, yield the sums £ m, w, that appear as the
zero to small denominators - see eq. (4) — which cause the divergence of almost all perturbation series
in classical dynamics.

*) The closure cl(A) of a set A is defined to be the union of the set A with all its limit points. A subset A of a set § is called dense in § if and only
if cl(A)=S. The subset A is said to be nowhere dense in S if the complement of cl(A) is dense there. To illustrate, let us delete all the rationals
(h!k) from the unit interval plus a small interval (2¢/k’) about each; the finite length of the deleted intervals is proportional to & < 1. This set of
deleted intervals is dense; its complement is nowhere dense yet includes almost all the length of the unit interval.

**) For continuous point sets, measure simply means length, area, volume, or the like. For discontinuous or disjoint point sets, we may cover
such sets with a collection of lengths, areas, volumes, or the like. We may then determine the length, area, volume, etc., of the limiting collection of
elements which just cover the given set, and we then call this the measure of the set. As illustration, we note that the rationals (h/k) in the above
footnote can be covered by intervals (2£/k*) whose total length can be made as small as we please. We thus assert that this set of rationals has
measure zero.
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Thus, in order to salvage as much as possible from this crush of densely packed tori causing small
denominators, KAM elect to perturb only those H, tori whose frequency sums satisfy |Z m, w,|= K/
(Z|m,|)", where v>2 and K are positive real numbers independent of the integers m, and the
frequencies w,. This restriction deletes from phase space not only those H,, tori having rational
frequencies but a small neighborhood surrounding each “rational” torus as well. Nonetheless, a quite
large majority of the H, tori remain, for, even though all tori in a 2¢(Z |m,|)”" neighborhood of each
rational torus having |I m, w,| are deleted, these neighborhoods decrease as I |m, | increases in such a
way that the deleted “volume” of phase space is proportional to ¢. The parameter ¢ can be chosen as
small as convergence requires and the perturbation coefficient 1 permits.

But the elimination of all tori causing too small denominators is only the first step in achieving
convergence of the KAM perturbation series; specifically, the numerators in their series must decrease
more rapidly than do the higher-order denominators. KAM ensure such convergence by choosing an
iterative-type procedure (Newton’s method) which provides a strong quadratic convergence of the
numerators to zero.

Ordinarily, the error of perturbation schemes decreases like u, ;/.2, @’ u', etc., as the number of
terms increases. On the other hand, the error in quadratically convergent schemes decreases like
“, p.z, pf‘, [.Ls, etc., as the number of iterations increases. For example, the recursion formula
A,,,=[(A2+2)/2A,)] for computing V2 provides iterates in which the error in A, , is proportional to
the square of the error in A,. To illustrate, if we set A;=1.4 then we find A, =1.414, A,=
1.41421356, etc. Here, A, returns four accurate digits for two while A, returns eight accurate digits for
four. In short, the iterates A, deviate from V2 by an error which decreases like u”'. This example is
typical of the quadratic convergence which enables the KAM proofs.

But small denominators and quadratic convergence aside, what insights does the KAM theorem
provide into the character of the motion for the Hamiltonian systems H = H,+ uH,? First, KAM at
last reveal the conditions under which such systems may be called nearly integrable (Moser’s
terminology). But they do so at the cost of introducing a pathology in phase space which is truly mind
boggling, as we shall shortly illustrate. It is precisely this pathology of intermingled dense and nondense
sets which make it obvious why Poincaré could, in general, find no constants of the motion other than
the total energy and why classical perturbation series must diverge. But if now, with KAM, we focus on
the nondense set of only slightly distorted tori in essence carrying the measure of the space, we perceive
that convergent perturbation theories can be devised which are valid for most, though not all, initial
conditions. Indeed, it is precisely some subset of preserved KAM tori that all the standard perturbation
theories are approximating until increasing nonlinearity forces them into absurdity.

However, perhaps the deepest insights into the structure of phase space (energy surface) for KAM
nearly integrable systems are provided by fig. 16b, due to Arnol’d, showing a Poincaré section for a
generic, two degrees of freedom Hamiltonian system. For reference, fig. 16a shows a set of preserved
nested tori as well as the surface of section used in fig. 16b. In fig. 16b itself, the origin at the center of
the circles is most conveniently viewed as the isolated intersection of a stable periodic orbit with the
surface of section shown in fig. 16a, although it is possible to view it as a point of stable equilibrium.

Near the origin the perturbation is presumed weak. Here, the preserved KAM tori are too closely
spaced to see the intervening structure. However, as our eye moves out from the origin, we observe, as
Poincaré and Birkhoff [30] predicted, the alternating elliptic and hyperbolic points generated by the
only periodic orbits to survive the destruction of an integrable torus bearing only periodic orbits. One
periodic orbit is stable, being surrounded by elliptic invariant curves, each generated by a single
trajectory. The other periodic orbit is unstable, being surrounded locally by hyperbolic invariant curves.
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(b)

Fig. 16. On the left is seen a set of nested tori with a cutaway showing a Poincaré surface of section. An exploded view of this surface of section is
shown on the right. The circles represent preserved tori. The first signs of instability are represented by the alternating elliptic-hyperbolic pairs
surrounding the origin. Moving out from the origin, one sees intersecting invariant curves in whose neighborhood lie trajectories which are
realizations of random processes. But the true complexity implied by this picture is that it is replicated about each elliptic fixed point in the figure
and in each replication ad infinitum.

The additional elliptic—hyperbolic pairs which appear further out from the origin are generated by the
same mechanism; the number of stable—unstable pairs is dictated by the w,/w, ratio of periodic orbits
on the original integrable torus. Just as was the case when the pendulum of fig. 3 was perturbed, the
invariant curves departing and approaching the unstable hyperbolic points intersect and form an
unbelievably intricate “lattice”. This mesh of intersecting curves is generated near all the hyperbolic
points but is pictured in fig. 16b only near its boundary. Points generated by orbits passing through the
neighborhood containing this mesh are wildly erratic and initially close orbits separate at an exponential
rate. Moreover, as the size of the perturbation increases, these flailing invariant curves fan out and stir
an increasing amount of phase space into an uncontrolled frenzy. Indeed, it is this behavior which is
responsible for the erratic splatter seen in the Hénon-Heiles system. But we are only warming to the
task of describing the complexity implied by fig. 16b, most of which cannot be drawn in this figure.

Specifically, the annular regions bearing alternating elliptic—hyperbolic pairs are dense throughout
the figure [31]; moreover, the lattices formed by intersecting invariant curves occur, but of varying
widths, in every neighborhood of the central invariant point [31]. Interior to each lattice region there is
(at least) a countable infinity of orbits which cannot be distinguished from a realization of a random
process. Moreover, the structure of fig. 16b is replicated around the center of every elliptic region in the
figure. “The dog has fleas, who themselves have fleas, who in turn also have fleas. ..”

But in fig. 16b, the everywhere dense regions of erratic behavior are disjoint, being separated by the
preserved KAM tori. However, when the system degrees of freedom are three or greater, the tori no
longer divide the energy surface and orbits in the chaotic regions can spread over the entire energy
surface undergoing a motion called Arnol’d diffusion [11]. This diffusion is exponentially slow but it
might nonetheless be of importance in physical situations such as occur in colliding beam accelerators
where particle bunches can collide an astronomical number of times during one experiment [12]. But
perhaps more important, this almost universal Arnol’d diffusion represents that seed which grows into
full blown chaos when the nonlinearity dominates.
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Finally, looking again at fig. 16b, the complexity implied there is so great that Poincaré did not even
attempt to draw it; specifically, he wrote, “One is struck by the complexity of this figure that I am not
even attempting to draw. Nothing can give us a better idea of the complexity of the three-body problem
and of all problems of dynamics where there is no holomorphic integral and Bohlin’s series diverge.”

It is precisely the dynamical pathology revealed by fig. 16b which was missed by all the integrable
approximations to the Fermi-Pasta—Ulam problem. But in a deeper sense, fig. 16b in fact reveals the
richness of dynamics, not its pathology. A growing nonlinearity removes the shackles imposed by
analytic constants of the motion, permitting a system to explore its energy surface unfettered and free.
The resulting erratic motion may be undisciplined but it is never dull. Currently, there has even
appeared a first bud of realization that this motion may have practical applications [32].

Let us now return to FPU. Boris Chirikov [33-35] was the first to recognize that the input data used
by FPU placed their systems squarely in KAM’s region of stability. Specifically, the FPU systems
exhibited precisely the behavior to be expected of KAM nearly integrable systems. Chirikov then went
further and presented theoretical evidence supporting the notion that, had FPU increased the strength
of their nonlinear perturbations, they would have observed the onset of chaos. In retrospect, one notes
that the Hénon—Heiles surfaces of section validate Chirikov’s predictions. Finally, Boris established
that the resonance overlap criterion he applied to the FPU systems also applies to a much broader class
of nonlinear systems. If Kruskal and Zabusky were the first to turn the FPU paradox into discovery,
then Chirikov was assuredly the second, for he revealed that the KAM theorem is very nearly optimal.
Indeed, it was violation of either conditions (ii) or (iii) of the KAM theorem that provided the first
predictable route to chaos. The routes to chaos discovered later by Ruelle-Takens, May—-Feigenbaum,
and Pomeau—Manneville have been exhaustively discussed elsewhere [36]; thus, we here provide an
elementary description of the route pioneered by Chirikov in his pursuit of an explanation for FPU. We
do so in the full knowledge that Chirikov’s criterion is far from perfect; nonetheless, it remains the most
widely used and provides the best order of magnitude estimate for the onset of chaos now available. We
shall give an analytic expression for the Chirikov resonance overlap criterion after the following
discussion.

We first seek to sketch a pictorially obvious explanation [37] of how a transition to chaos occurs when
a nonlinear perturbation of H, becomes sufficiently large, i.e., when KAM’s condition (ii) is violated.
For our H,, we take Hy=J +J,— J:=3J,J,+J%, a two degrees of freedom system which is as
convenient as it is arbitrary. Here each J, is a momentum conjugate to an angle variable 6,. Now the
Hamiltonian H, = H, + aJ,J, cos(26, — 26,) is integrable, as is the Hamiltonian H, = H, + B/J, 1% %
cos(26, — 38,), due to the presence of constants I, = J, + J, and I, = 3J, +2J,, respectively. The virtue
of the integrable H, and H, is that their analytically computable surfaces of section each exhibit only
one region of alternating elliptic-hyperbolic pairs, as can be seen in figs. 17 and 18. The two
crescent-shaped, so-called 2-2 resonant zone in fig. 17 is due to the perturbation cos(26, — 26,), which
strongly distorts those H,, tori having frequency ratios near 2/2. The 2-3 resonant zone seen in fig. 18 is
a result of the cos(26, — 36,) perturbation, which strongly distorts H; tori with frequency ratios near
2/3. Now as the size of these perturbations increase, their respective resonant zones grow wider and
their centers move away from the origin. This opens the opportunity for these resonant zones to overlap
before our very eyes.

In particular, from our knowledge of H,, Hg, I, and I;, we can determine the precise conditions
under which edges of the independent 2-2 and 3-2 resonant zones first occupy the same position in
phase space. Then, we let both the 2-2 and the 2-3 perturbations act on H, at the same time.
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Fig. 17. A Poincaré section for the integrable Hamiltonian H, = Fig. 18. Poincaré section for a distinct integrable Hamiltonian H, =
H,+ aJ,J, cos(26, — 28,), where here and in the next two figures H, + BJ,J3" cos(26, - 36,). Here a single elliptic-hyperbolic set gen-

Hy=1J,+J,—J:=J,J,+ J3. Note that, as opposed to fig. 16, here erates a single chain of three islands.

only one set of elliptic—hyperbolic points appear, yielding a so-called
chain of islands.

Specifically, we now regard
H,, = Hy+ al,J, cos(28, — 26,) + BJ,J3'* cos(26, — 36,)

as our full Hamiltonian. Mimicking Hénon—-Heiles, we set « = 8 =0.02 and let the strength of the
perturbation be determined solely by the energy. We now predict the onset of chaos in the full
Hamiltonian to occur at E = 0.2 because this is the energy at which the computable crescent regions in
figs. 17 and 18 first touch. Turning to the computer, in fig. 19a at E =0.056, we see only the 2-2
resonance because the torus bearing the 3-2 frequency ratio has not yet appeared in the surface of
section. However, in fig. 19b at energy E = 0.18, we see that both the 2-2 and the 2-3 crescent regions
are present. Then in fig. 19c at £ =0.2, we note the surprise appearance of a 5-1 resonance between
the 2-2 and 2-3; but in fig. 19d, we observe a small emerging region of chaos as predicted by the
integrable approximations. Although the chaos of fig. 19d is drawn separately, it actually surrounds the
larger crescents in fig. 19c. Finally, fig. 19¢ at energy E =0.2095 reminds us of the band of chaos
appearing in Hénon-Heiles’ fig. 12. This then briefly illustrates the first KAM/Chirikov route to chaos.

Returning briefly to Chirikov’s resonance overlap criterion, Boris first normalizes a system’s relevant
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E= 0.056

Fig. 19. Five surfaces of section showing the effect of adding the perturbations of both H, and H, to H, and then increasing the strength of these
perturbations. Specifically, we set « = 8=0.02 and then increase the energy as a single perturbation parameter. In (a) at E =0.056, only the H,
island chain can be seen. However, in (b), at E =0.18, both the H, and H, island chains have appeared though they are well separated. In (c) and
(d), both at energy E = 0.20, we note the sudden appearance of a higher-order island chain and a very small erratic region of chaos. For clarity, (c)
and (d) have been drawn separately; imagine them superposed. Finally at E =0.2095 in (¢}, we see a band of chaos reminiscent of that seen in the
Hénon-Heiles problem. The central point of these figures is that chaos occurs when the integrable island chains (resonances) overlap.

phase space volume to unity. He then estimates the volume V; of all resonant zones (as in figs. 17 and
18) as if each interaction term in the potential acted alone. He then asserts that widespread chaos
occurs when Vp = 1.

Let us now turn to systems which lead to violation of the KAM frequency condition (iii). In order to
violate the KAM frequency condition in the strongest possible way, we elect [38] to consider an H,
having constant frequencies. Here, H = H, + yH,, where

Hy=1J, +20,+3J,, H,=[aJ;”?cos(26, — 8,) + B(J,J,J,)""* cos(6, + 6, - 6,)] .

As before, J, is the momentum canonically conjugate to position variable 6,. Recalling that w,=
dH,/aJ,, we note that w, = w,/2 = w,/3 independent of the J, or 6. The upshot is that all H, tori bear
rational frequencies in the ratio 1/2/3. Thus, the resonant 2-1 perturbation cos(26, — 6,) and the
resonant 1/1/1 term cos(6, + 6, — 6;) overlap throughout phase space. In addition, if we introduce the
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canonical transformation J, = #,, 0, = ¢, + kt, k=1,2,3, then we obtain

#=rvylaf ;/2 cos(2¢y — ¢,) + B(jIJZogB)UZ cos(, + ¥, — ;)]

as the transformed Hamiltonian. The form taken by # now exposes a remarkable fact, for, if we now
scale the time according to ¢ = y7, we find

g = [af, ;/2 cos(2¢, — ) + B(f|f2f3)”2 cos(¢, + ¥, — )],

from which y has completely disappeared! Thus, despite the fact that y appears as a parameter
measuring perturbation strength in H = H,+ yH,, in fact it merely scales the time. Whatever the
character of the motion for H, whether integrable or chaotic, varying y changes only the rate at which
things happen, not what happens. Moreover, this remains true no matter how small the value of y > 0.
Second, the form of % (or %) makes it clear that $ = § +2¢, +34, is a constant of the motion
(obviously, so is I=J, +2J, + 3J,). Invoking techniques well known to students of advanced classical
dynamics [39], this constant can be used to reduce the number of degrees of freedom for this system
from three to two, thereby permitting use of two-dimensional, plane surfaces of section. We here omit
analytical details and proceed straight to the numerical results shown in fig. 20a, b. Figure 20a reveals a
typical surface of section for the case in which phase space exhibits a regular and a chaotic component;
fig. 20b presents a typical surface of section for which most of phase space is covered with chaotic
trajectories. These two figures indicate the change in surface of section which can occur when system
parameters are varied; for details see ref. [38].

The quite remarkable feature of these surfaces of section is that they are invariant under changes in
the value of vy for any y > 0. Thus, there is a discontinuous change from the integrable motion of H, to
the chaotic motion of the full H the moment vy increases away from zero. Although such behavior is
common in billiard systems, the results described here reveal that it also occurs in systems having
smooth potentials. In fact, this behavior is quite common in smooth systems. The only requirements for

Fig. 20. (a) Both order and chaos in the surface of section for the Lunsford-Ford [38] Hamiltonian. This surface of section is invariant as the
nonlinearity parameter y tends to zero. (b) Chaos dominates; this surface of section too is invariant as vy tends to zero. These figures show the effect
of varying a system parameter; for details see ref. [38].
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this behavior in Hamiltonian systems expandable about a stable equilibrium point or periodic orbit are
that the constant frequencies of the quadratic terms exhibit sufficient rational dependences that the
cubic couplings can resonantly couple all degrees of freedom before quartic or higher-order terms can
add nonlinear corrections to the constant harmonic frequencies.

For illustrative purposes, these conditions were forced upon the simple, three degrees of freedom
Hamiltonian system H,, considered above; however, in many-body systems, their satisfaction is both
frequent and automatic. Two immediate consequences accrue. First, chaos is now seen to be ubiquitous
in the macroscopic world. But second and equally important, this second KAM/Chirikov route to chaos
is also a route to classical statistical mechanics which has for decades held the belief that its justification
would eventually derive from classical mechanics itself. Consider, for example, equilibrium statistical
mechanics, which computes equilibrium quantities from the partition function Z = { dg dp e " on the
assumption that the weak yH, which brings the system to equilibrium need not be added to the H, in Z.
KAM/Chirikov now permit an a priori proof of this assumption to replace the earlier a posteriori
arguments touting that “it works”.

In concluding this section, let us note that violation of KAM condition (ii) provides a route to chaos
with a threshold just as do several other paths to chaos. However, violation of KAM condition (iii)
yields a discontinuous jump to chaos from the unperturbed integrable system. Both routes have
relevance to many areas of physics including statistical physics.

We now present an example from nonequilibrium statistical mechanics which carries us full circle
back to FPU. Specifically, we substantiate their belief that a computer can provide an illuminating first
principles verification of thermal diffusion in the dynamics of a nonlinear Hamiltonian system, i.e., a
derivation containing no phenomenological assumptions.

5. The ding-a-ling model

“It seems there is no problem in modern physics for which there
are on record as many false starts, and as many theories which
overlook some essential feature, as in the problem of the thermal
conductivity of nonconducting crystals.”

R.E. Peierls [40]

What is the nature of the problem Peierls highlights? First, recall that energy (heat) transport in an
insulating solid is governed by the phenomenological Fourier heat equation [41] J = — KVT, where J is
energy (heat) current, V is the gradient operator, T is temperature, and K is a size independent,
intrinsic system property called the thermal conductivity. This then is the problem. There is no first
principles, analytic derivation of this phenomenological law nor, prior to KAM/Chirikov, were there
valid criteria defining a category of systems whose numerical integration might be expected to yield a
proper thermal conductivity, not even when attention is restricted solely to lattice energy transport.
Zabusky suggests that this lack was one of the prime forces driving FPU to study one-dimensional
nonlinear lattices. At first blush, it might appear that the FPU calculations unveiled yet another “false
start”; however, the FPU preprint described not a failure, but a paradox demanding resolution.
Specifically, the FPU results challenged the theoretical community to explain why the well-known
theorems of Poincaré, Fermi, and Siegel did not, in fact, define the proper criteria for observing a
normal thermal conductivity. Although there is still no first principles analytical derivation of the
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Fourier heat law, direct numerical integration of Newton’s equations has verified that chaotic dynamical
systems do in fact exhibit an energy transport governed by the Fourier heat law. Indeed, the key
ingredient is now known to be chaos [42]; however, before presenting the evidence supporting this
conclusion, let us stroll along part of the path which led to it. Following FPU, we confine our attention
to one-dimensional nonlinear systems. They clearly offer greater ease of numerical integration, but
more important they can, folklore to the contrary notwithstanding, exhibit an energy transport which
obeys the Fourier heat law.

For a one-dimensional lattice system at equilibrium, the average energy flow at any point is zero.
Nonetheless, there are fluctuations in which the net energy flow reverses its direction in a highly erratic
and seemingly unpredictable fashion. If a temperature difference is placed across the ends of such a
lattice system, energy fluctuations are expected to continue almost as before, only now the temperature
difference slightly favors fluctuations in one direction over the other. Energy transport is thus seen to
resemble a random walk in which on average there is no net movement but in which root mean square
deviation can nonetheless grow. More than a mere analogy is involved here. Indeed, Wang and
Uhlenbeck [43] announced many years ago that the heat equation is the continuum limit of a discrete
random walk. But if we now wish to establish that a deterministic Newtonian system exhibits energy
transport obeying the Fourier heat law, we find ourselves facing not merely that FPU paradox but the
much deeper paradox involving how a predictable, deterministic system can ever exhibit unpredictable,
random behavior. :

Clearly nothing in the traditional background of most physicists prepares them for such contradic-
tions; but worse, even the traditional definition of classical chaos involving sensitive dependence,
Liapunov numbers, and the like, leaves the scientific audience equally unprepared. Indeed, one finds
even the most recent issues of journals such as Physical Review Letters, Physica D, or Nature, littered
with terminology such as “seemingly random”, apparently unpredictable”, or “deterministic chaos”.

Fortunately, the need for such dissembling has long since passed. For systems chaotic in the sense of
positive Liapunov number are also deterministically random in the sense [44] of algorithmic complexity
theory — see appendix A for details. At this point let us merely state that the paradox can be resolved
merely by noting that nothing in principle prevents a deterministic orbit from being a realization of a
random process. In any event, if one wishes to expose a classical system yielding diffusive energy
transport then one is forced to regard deterministic randomness (chaos) as a necessary ingredient. But is
it also sufficient?

Once Casati and Ford [45] established that the unequal-mass Toda lattice, unlike its integrable
equal-mass brother, exhibits a transition to chaos with increasing energy, they immediately recognized
that this unequal-mass system was a prime candidate for demonstrating the validity of the Fourier heat
law via direct numerical integration of its equations of motion. However, at the time they were
enmeshed in a numerical investigation of energy transport in the 1-D, unequal-mass hard-point gas,
which, as particle number increased, appeared to be always teetering on the brink of yielding a thermal
conductivity independent of length. In the equal-mass hard-point gas, as in the equal-mass Toda lattice,
energy is transported by unattenuated solitons. For both, heat current is proportional to temperature
difference rather than gradient, and conductivity K is therefore proportional to system length. With the
introduction of distributed mass impurities, the solitons are attenuated permitting the hard-point gas to
become mixing (but not chaotic) and the Toda lattice to exhibit a transition to chaos. This being the
case, why did Casati et al. not immediately drop the hard-point gas and turn to the Toda lattice? To
understand this point, one must recall that initially close orbits for mixing systems are rigorously known
to separate according to some polynomial function of the time ¢ whereas initially close chaotic orbits
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separate exponentially with the time. However, if the polynomial function of ¢ is of sufficiently higher
order, then only extreme care and great numerical accuracy could distinguish mixing from chaos, to
distinguish very weak length dependence from no length independence in K.

Despite many hours of computer time, reams of computer paper, countless mass distributions, and
particle number increased to our limit, soliton-like entities continued to move through our unequal-
mass, hard-point gas systems carrying energy proportional to temperature difference rather than
gradient. Moreover, as we varied the mass distributions and increased system particle number, the
conductivity would tend toward but never reach a constant value. Surveying the character of our
evidence, we concluded that mixing, at least in the hard-point gas, is not rapid enough to yield a
length-independent thermal conductivity. We thus turned to an all-out assault on the unequal-mass
Toda lattice, but alas, the seemingly indomitable “solition” again defeated our best efforts. Stacks of
computer output for the Toda lattice led us to believe that, could we have gone beyond our 200 particle
limit, a fully diffusive energy transport might have been obtained. Indeed for some mass distributions,
our results were tantalizingly close, but they never stabilized. We roundly cursed the day the soliton was
born; we haunted the halls of soliton conferences in hopes of finding its Achilles heel. And then, Glory
Hallelujah, young Billy Visscher introduced us (for details, see ref. [41]) to the ding-a-ling model shown
in fig. 21.

Figure 21 exposes a one-dimensional, equal-mass system composed of free particles alternating with
harmonically bound ones. Despite its hybrid character, Visscher had high hopes for this model. First, it
was computationally tractable, but even more important, the rapid oscillations of the bound particles
would lead to effectively random phases in sequential collisions with the free particles. If system motion
could thereby exhibit enough randomness, then diffusive energy transport would appear likely. Casati
et al. saw three additional virtues in the model. First, suppose all particles in fig. 21 are at rest; then let
the leftmost free particle be given a “hammer-blow” creating a “soliton” moving to the right. After
being struck by this free particle, the first bound particle will move to the right; however, if the
restoring force on this bound particle is large enough, it will not swing out far enough to hit the
neighboring free particle to the right. Thus, the soliton dies after just one collision! Nonetheless, and
this is the second point, if the amplitude of the initial soliton-type sound pulse is sufficiently large, then
it can propagate through to the other end of the system despite being strongly attenuated en route. And
third, the final state for this system can be exquisitely sensitive to a slight change in initial state, not
because of isolated binary collisions between free and bound particles, but because a free particle can
have multiple collisions with a given bound particle before colliding with its other bound neighbor. It is
these multiple collisions which yield the chaos, the deterministic randomness, shown in fig. 22.

Figure 22a pictures the simplest version of our system, which places one bound and one free particle
on a ring (periodic boundary conditions). For this simplest system, we may construct the surfaces of
section shown in figs. 22b, c. Once particle number N is fixed, then all other parameters for this system
can be “scaled” out save one which we chose to be w, the angular frequency of the bound particle. We

3%%%@&

Fig. 21. This figure reveals the ding-a-ling model (due to Bill Visscher) to be a one-dimensional system composed of free particles alternating with
harmonically bound particles. The model is quite nonphysical yet nonetheless retains that essential feature required to exhibit a thermal conductivity
independent of length.
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Fig. 22. (a) The simplest ding-a-ling model having two particles — one Fig. 23. This figure plots the thermal conductivity for the ding-a-ling
bound one free ~ moving on a ring. (b) A surface of section for this model as a function of particle number. Here hot and cold reservoirs
ding-a-ling model when the spring is sufficiently weak that the motion are placed at the left and right ends of the system, respectively. The
is close to that of the integrable hard-point gas. (c) For sufficiently conductivity K is computed from J=~KVT and it becomes in-
stiff spring, one obtains a chaotic surface of section. dependent of length at about N = 10.

may also view w as specifying the stiffness of the harmonic spring. When w =0, this system becomes the
two-particle hard-point gas, which is integrable. Figure 22b shows the nearly integrable, weak-spring
surface of section at w = 0.20. Here, smooth curves exist almost everywhere except for the thin region
of chaos at the extreme left of the figure, where multiple collisions are occurring. Chaos becomes
widespread at w =1.00 (not shown), and in fig. 22c the transition to total chaos at @ =3.00 appears
complete. For systems with particle number greater than two, we have verified their transition to total
chaos via exponential orbit separation and Liapunov numbers. With increasing N, the value of w at
which chaos becomes widespread rapidly decreases.

We now placed the system shown in fig. 21 between two simulated heat reservoirs and numerically
integrated the equations of motion using @ =1. Next, we established that the heat current J and the
temperature gradient VT achieved a constant steady state value. We then computed the thermal
conductivity from the heat equation J = —KVT, where VT =dT/dx for these one-dimensional systems
and where particle temperature T is taken to be twice the particle’s kinetic energy. Finally, we
computed K over a range of particle number N and verified, as shown in fig. 23, that K becomes size
independent for N =10. Finally, our reservoir value for K was corroborated via two independent
calculations: the Green—Kubo formalism and a random phase argument — details are given elsewhere
[41]. "

It is now time to discuss why we named our system the ding-a-ling model. Its first meaning derives
from a Bill Visscher phantasy in which each free particle is viewed as a clapper swinging ‘twixt
neighboring oscillators and forcing them to ring out like bells. But quite aside from lending itself to
suggestive onomatopoeia, there is a second reason for the name. Webster’s dictionary states that
ding-a-ling is most likely a euphemism for damn fool, and ours is a damn fool model indeed. This
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hybrid, this unphysical half-breed of questionable ancestry - half ideal gas, half harmonic oscillator — is
a true ding-a-ling for certain. Readers are therefore to be forgiven if their first reaction to the diffusive
energy transport exhibited by the ding-a-ling model is to regard it as a freak occurrence in an absurd
model. But au contraire, quite the opposite is true.

Had we wished merely to predict a lattice thermal conductivity for some laboratory substance
starting from Newton’s equations, we could have positioned a three-dimensional, many-body system
having a physically realistic interatomic potential between simulated thermal reservoirs and then let a
computer churn out an answer to be compared with experiment. There is much to be learned from such
calculations as the excellent paper by McDonald and Tsai reveals [46]. However, the ding-a-ling model
serves a quite different purpose. It proves that a dramatically short, one-dimensional lattice system can
exhibit diffusive energy transport provided it has that one ingredient essential for the task. With the
single-minded intent of exposing that essential ingredient, the ding-a-ling model has abstracted away all
the seemingly crucial attributes of a proper physical system save the one unique attribute required to
yield a diffusive energy transport. Like the Cheshire cat in Alice in Wonderland, in the ding-a-ling
model everything has disappeared except the smile. In this regard, we must emphasize that attenuation
of solitons is a problem only for small systems. For large (laboratory-sized) systems, the transition of
energy transport as pure sound to heat is concurrent with the transition from order to chaos. In
summary, deterministic randomness (chaos) is the sine qua non for a proper thermal conductivity.

This section has emphasized the contribution of the ding-a-ling model to the problem of lattice
thermal conductivity because it is a direct descendant of the FPU problem. Obviously, many others
have sought to expose the essentials needed for diffusive energy transport and the motivation for the
ding-a-ling model owes much to the efforts of others. Work on harmonic systems with impurities has
been reviewed by Visscher [47] and by Jackson [48], who also reviews the research on nonlinear
systems. But especially relevant to the present discussion are the papers of Mokross and Biittner [49]
and those of Jackson and Mistriotis, [50], for both these papers investigated energy transport in
diatomic Toda lattices. Mokross and Biittner investigated diatomic Toda lattices for particle number up
to N =30 and reported they had obtained a proper, size-independent thermal conductivity. Jackson and
Mistriotis, on the other hand, asserted that they could obtain a size-independent conductivity only for
N =250. The unpublished results of Casati et al. support this Jackson-Mistriotis conclusion. Indeed,
there is much overlap in the conclusions reached by Jackson—Mistriotis and Casati et al. Details may be
found in their respective papers.

6. Discussion

The FPU paradox forces us to face some of our deepest insecurities. Given the Hamiltonian for a
system, what is the character of its motion? What requirements must be imposed on a dynamical system
in order that an approach to equilibrium be guaranteed and that this approach proceed at the proper
rate? Can statistical mechanics — both equilibrium and nonequilibrium — be derived from the underlying
dynamics? And now the questions bifurcate, evolving into questions which probe almost every area of
science. Dyson’s quite pertinent comment, “Ford’s explanation cannot be regarded as complete”,
lingers, for it applies not just to Ford but to all. Indeed, the “full and final” explanation of FPU still
pends. It is this very fact which makes the FPU paradox such a delightful pedagogical “skeleton” upon
which to drape the evolving story of nonlinear dynamics/chaos. This review is but another retelling of
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that story by one intimately involved in its unfolding. It is based on a lecture first prepared for a Los
Alamos audience but subsequently presented elsewhere. It has now reached the graduate student level
as the opening lecture in an advanced graduate course in nonlinear dynamics/chaos. This review
represents its first appearance in print, but it may appear later as the opening chapter in a graduate text.
A good conference talk never dies, it simply metamorphoses over. .. and over... and over again.

The FPU paradox was not only instrumental in the development of solitons, heavy breathers, inverse
scattering, completely integrable systems, and the like but also in the development of Chirikov’s
resonance overlap criterion for the onset of chaos. But in addition, FPU is a close cousin to the surprise
packages contained in the Hénon-Heiles system and the Toda lattice, which latter links back to
solitons, breathers, etc. Finally, its resolution led to the understanding that few-body systems can
behave just as randomly as do many-body systems; indeed, it is now appreciated that statistical
behavior in many-body systems is not so much a consequence of the law of large numbers as of the
ubiquity of chaos. The marriage of classical mechanics and classical statistical mechanics is now only a
matter of time, although the final prenuptial agreement may not be signed within our lifetime.

Statistical mechanics frequently insists on the thermodynamic limit in which system volume and
particle number tend to infinity whereas classical dynamics still has not fully mapped out the domains of
behavior in finite systems. In an effort to bridge the perceived gap between dynamics and statistical
mechanics, a growing number of investigators [51] have sought, with mixed results, to establish that
chaos occurs at vanishingly small nonlinearity as particle number tends to infinity. These computer
studies form a valiant first attack on a problem whose subtle intricacies dwarf those of the KAM
theorem by orders of magnitude. What are these intricacies? We have space to list only a few. First, the
thermodynamic limit is, strictly speaking, only a mathematical convenience, not a physical necessity.
Three independent groups have, for example, established [42, 49, 50] that small, even one-dimensional
systems can exhibit a normal, Fourier conductivity provided phase space is dominated by chaos.
Similarly, Chirikov’s kicked rotor, though sufficiently chaotic at large nonlinearity to exhibit diffusion,
retains small islands of stability no matter how strong the nonlinearity [52]. In other systems, chaos
dominates no matter how small the nonlinearity*’; in yet others the amount of chaos at first increases
and then decreases with increasing nonlinearity.** Such variety makes generalities suspect.

But what now of the subleties? Return to Siegels theorem [13] regarding analytic Hamiltonians which
can be expanded in a power series about their equilibrium points. Since nonintegrable systems are
dense in their {c,}-space, integrable systems can in general be distinguished from their dense
nonintegrable neighbors only if all coefficients in their power series are known to infinite precision.
Physicists do not often enjoy this luxury. As a final subtlety, Moser [13] points out that, if the definition
of neighborhood in {c, }-space be slightly altered from the intuitively obvious definition Siegel uses,
then integrable systems are also dense in {c,}-space! We thus reach the distressing conclusion that
distinguishing integrable from nonintegrable systems is in general no easier than distinguishing rational
from irrational numbers.

Placed in perspective, all these problems reveal finite human beings using finite tools to reach for
infinity — the infinitely large, the infinitely small, the infinitely complex. Truly, what fools we mortals
be; we fail to listen even to our own prophets! Avagadro counted the particles in a box and found them

*) In addition to the example presented in ref. [37], the 3 D hard-point gas is integrable, but when the points become spheres, system motion is
chaotic no matter how small the radius >0 of the spheres.

**) Consider the one-dimensional Lennard-Jones gas. At low energies, its motion is negligibly different from that of coupled harmonic
oscillators. As its energy is increased, a transition to chaotic behavior occurs. But at extremely large energy, the amount of chaotic behavior must
decrease rapidly as system motion tends towards that of the integrable 1D hard-point gas.
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to be finite. Einstein patiently explained to all that man’s ultimate speed is finite. Heisenberg pointed
out that man’s ability to measure conjugate variables is finite. Godel established that man’s ability to
provide a complete mathematical description of his universe is finite — see the appendix below. But still
we do not listen. The overwhelming majority of chaos theorists valiantly cling to the notion of
deterministic predictability and speak of “deterministic chaos”. By this, they mean that their most
accurate available knowledge of an initial state permits them to “‘predict” future states with exponen-
tially decreasing accuracy. But algorithmic complexity theory — again consult the appendix — establishes
that this is precisely the type of “prediction” one could provide for a random walk. And in fact, a
chaotic process is random. It is also deterministic in the sense that the governing equations satisfy the
conditions of some existence—uniqueness theorem. Thus, some few have begun to refer to chaos as
“deterministic randomness”. In the context of this paragraph, this term makes it clear that we cannot
obtain any more information about the future of a chaotic state sequence than we put in at the onset,
and the amount we put in is always finite. In consequence, another fundamental limitation on man lies
exposed. Chaos is thus opening a new era in science. This entire review has pointed toward this final
conclusion. However, as readers consider whether to accept or reject our conclusion, they might wish to
contemplate the following observation:

“I know that most men, including those at ease with problems of the greatest complexity, can
seldom accept even the simplest and most obvious truth if it be such as would oblige them to
admit the falsity of conclusions which they reached perhaps with great difficulty, conclusions
which they have delighted in explaining to colleagues, which they have proudly taught to
others, and which they have woven, thread by thread, into the fabric of their lives.”

Leo Tolstoy
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Appendix A. Algorithmic complexity theory

The lexicographer [53] surveys human usage and publishes the consensus — chaos: a state of things in
which chance is supreme. The chaologist [36] surveys his discipline and announces definitional anarchy,
even though greater resolution might have revealed but one definition having a thousand names. In the
current literature, one finds “erratic”, “irregular”, “‘disordered”, “seemingly unpredictable”, ‘‘appar-
ently random”. Greater technical sophistication invokes positive Liapunov numbers, positive metric or

topological entropy, everywhere negative curvature, or the like. Were the dynamical systems under
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scrutiny not labeled deterministic, all the above defining terms would naturally fall under the obvious
rubric, “random”. But this word immediately implies the term “deterministic randomness”, which a
physicist instinctively feels is equivalent to the oxymoron ‘“predictable unpredictability”. But the
existence—uniqueness underpinning our Laplacian clockwork universe notwithstanding, determinism
and predictability are not synonyms. Indeed, there is life beyond the conventional “‘deterministic
chaos”; however, we must develop a new definition of randomness in order to find it. To that end, we
now present the rudiments of algorithmic complexity theory, also known as algorithmic information
theory.

At the foundation of algorithmic complexity theory lies the notion of randomness in finite and
infinite digit strings. To give meaning to randomness, complexity theory introduces a quantity K,,
called complexity, defined as the bit length of the shortest algorithm (computer program) capable of
computing a given sequence of N bits.

One immediately wonders if complexity can bé made machine independent. In answer, Kolmogorov
has proven the existence of a universal machine U such that K;(x) < K,(x) + C,, where U denotes
universal and & denotes arbitrary machine, where x denotes the finite output binary string, and where
C,, depends on & but not x.

Next, a reader might inquire if complexity K, can always be precisely determined? To answer, recall
that, if K, is the complexity of a given N-bit sequence, then no (K, — 1) bit program can compute this
sequence. Suppose then we seek to verify someone’s assertion that a specified sequence has complexity
K, by sequentially running all programs having (K, — 1) bits. Many of these programs will at best
output some nonsense result and halt, but some of them may run without halting for a time longer than
we have to wait. How then can we be certain that at least one of these latter programs will not
eventually print out the specified sequence, revealing that its actual complexity is (K,, — 1) or less? The
answer to this question lies at the bedrock foundations of mathematics, for Turing’s Halting Theorem
[54], the computing man’s version of Gddel’s theorem, asserts that the only way to know whether an
arbitrary computer program will accomplish its task and halt is to let it run and see. Determining a
precise value for complexity K, thus lies beyond human capability. Nonetheless, K, can and does serve
as a useful mathematical construct, but of greater significance for us, K, can in most cases be estimated
as well as is needed.

To illustrate, let us now estimate complexity for some informative examples. For simplicity, we shall
assume all sequences to be binary; were the original sequence given in some other base, we could easily
convert it to binary via a subroutine whose fixed bit length will not materially affect K,,, provided N is
large relative to the bit length of the subroutine. Indeed, the following estimates become useful only
when N is sufficiently large that the bound on K|, is dominated by N.

First, note that all N-bit binary sequences can be printed by the copy program, “PRINT
[b,,b,,...,b,]", where [b,,b,,...,by] denotes any arbitrary sequence. Then consider long se-
quences so patternless they cannot be computed by any algorithm appreciably shorter than the copy
program. Clearly, an upper bound on the complexity of such sequences is given by K, < N + C,, where
C,< N is a constant which accounts for the bit length of the computer operating system, internal
functions, and the like; a lower bound on the complexity of such sequences reads K,, = N — C,, where
C, < N sets our cutoff for patternless sequences. Turning now to the opposite extreme of ordered
sequences such as a string of N ones. This sequence can be computed by a program, “PRINT ONE, N
TIMES”, whose bit length is almost completely exhausted by the log,N bits required to specify the
integer N. For this highly ordered sequence, an upper bound on complexity may be written K, <
log,N + C,.
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Clearly all these bounds require that N be sufficiently large that N or log, N dominate their associated
C’s. However, “sufficiently large”” must not be thought to imply that our inequalities become accurate
only in the limit as N— o; this phrase is here used solely to ensure that K, reflect a property of the
sequence rather than the computer. To fully appreciate this point, rewrite the last two inequalities as
K, =N[1-(C,/N)] and K, =log,N[1+(C,/log,N)]. It is now clear that (C,/N) and (C,/log,N)
represent the fractional error made in writing the more useful estimates K, = N and K, =log,N. How
“sufficiently large” N must be is determined by the error permitted in the physical or mathematical
application being considered. However, it must be emphasized that estimates of complexity become
meaningless when applied to sequences so short that N or log,N is less than their relevant C’s.

Following Kolmogorov, Chaitin, and Solomonov (see ref. [55]), we now assert that an N-bit
sequence is random provided that its complexity K, is approximately equal to N. Random sequences
are informationally incompressible, so unpredictably erratic that they cannot be computed by any
algorithm whose bit length is appreciably less than that of the sequence. Moreover, as Martin-Lof has
shown [44], such sequences are nothing less than realizations of conventionally defined stochastic
processes. But now to ensure that the necessary phrase, “‘approximately equal to”, can be made
sufficiently precise that the definition of algorithmic randomness is seen to be valid when the value of N
is large, let us introduce Martin-Lof’s theorem [44]: The fractional number F of N-bit binary sequences
having complexity K,, = N[1 — (C/N)] satisfies F = (1—2"°), where C is a positive integer in the range
0< C< N. This theorem permits us to choose C such that F is as close to unity as we please; we can
then choose N such that K, approaches N as close as we please. Thus, when N> C> 1, we have that
the overwhelming majority of the corresponding N-bit binary sequences are unequivocally random, i.e.,
K, = N. To put meat on the bare bones of these arguments, consider the specific case in which C =5
and N =100. Then more than 96% of the 2'* (=10) 100-bit sequences have complexity Ko, =95.
Truly, among N-bit sequences randomness reigns.

But in the remaining small set of sequences for which K, # N, there is a subset of informationally
compressible sequences having K, < N. Kolmogorov, Chaitin, and Solomonov call such sequences
nonrandom. Among these, there is a subset whose information content is logarithmically compressible,
i.e., K, =log,N + C, for all N such that log,N > C; it is precisely these highly ordered sequences which
occur most frequently in applications. Note that, because of their logarithmic compressibility, these
sequences are just as unequivocally nonrandom as the K, = N sequences are unequivocally random.
Moreover, since N-bit sequences divide into that vast majority which are random and that small
minority whose information content is logarithmically compressible, only a small subset indeed remains
to occupy that narrow and unimportant (to us) border where randomness blends into nonrandomness.
The meaning of complexity is now well defined for finite sequences, but how are we to extend the
definition to infinite sequences?

Kolmogorov originally proposed that an infinite sequence should be considered random if all its finite
subsequences of length N had complexity K, = N. However for increasing N, Martin-Lof demonstrated
that the complexity of finite sequences oscillated in an irregular way between K, =N and K, =
N —log,N. The problem is that even random sequences sometimes have quite extended nonrandom
segments. Various ways have been suggested to circumvent this problem and each has its advocates.
Here we elect to follow Alekseev and define the complexity K, of an infinite sequence via the equation
K, =lim,_,. (K,/N). With this definition in hand, we again follow Alekseev and colleagues and assert
that an infinite sequence is random when K_ >0 and nonrandom when K, =0. It is thus common to
speak of positive or null complexity as a substitute for saying random or nonrandom. These definitions
have the virtue of eliminating the oscillations in K, and of providing a sharp divide between random
and nonrandom. In addition, using these definitions, Martin-Lof has proven that sequences having
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positive complexity are realizations of a random processes which pass all humanly computable tests for
randomness; this proof provides the iron-clad link between conventional definitions and the algorithmic
definition of randomness.

We can now at last forge the connection [56] between the conventional definitions of chaos and its
definition as deterministic randomness. The intuitive definitions “erratic”, “irregular”, “disordered”,
“seemingly unpredictable”, “apparently random” can be subsumed under the slightly more technical
“exponential sensitivity of final state upon initial state’. In mathematical jargon, exponential sensitivity
means positive Liapunov numbers. But now let us inquire why this most commonly accepted definition
[57] focuses its attention so intently upon exponential growth of initial error in the time evolution of
chaotic dynamical systems? Why can it not be satisfied with an error which grows according to a power
law having a large exponent, or why not the opposite where error grows like an exponential raised to an
exponential?

The answer is revealing: Simple exponential error growth (in systems with bounded state space, of
course) is precisely the point at which our calculations lose about one digit of accuracy per suitably
chosen unit of time. Thus, if we wish to maintain constant calculational accuracy over an extended
interval, we must input about as much information as we get out of our calculations. This is the point at
which our IBM or CRAY computers begin, in effect, to execute the copy program discussed earlier;
indeed, they become elaborate Xerox machines. In summary, it is the point at which our deterministic
algorithms are in the process of computing orbits which are both deterministic and algorithmically
random. There is no contradiction here, since the existence and uniqueness (determinism) of chaotic
orbits does not preclude them from being realizations of some random process. Consequently, it now
becomes clear that the definition of chaos as exponential sensitivity or positive Liapunov numbers is
fully equivalent to its definition as deterministic randomness; which definition one uses is a matter of
choice.

The above discussion has been at the intuitive level, mathematical rigor has been supplied by
Alekseev, Yakobson, and Brudno (see ref. [58]). In closing, let us observe that algorithmic complexity
is currently finding numerous applications in the physical sciences [59, 60]. Finally, looking back at the
opening sentence of this appendix, we perceive that we have come full circle, for the scientist is now
learning what the man in the street has long known.
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